

toad

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Introduction to Design Patterns

Christian Kästner Charlie Garrod

15-214

toad 2 15-214 Kästner

Learning Goals

• Understand the nature of design patterns
 Parts of a design pattern
 Applicability and benefits of design patterns
 Limitations and pitfalls of design patterns

• Apply the composite design pattern

toad 3 15-214 Kästner

Design Exercise (on paper!)

• You are designing software for a shipping company.

• There are several different kinds of items that can be
shipped: letters, packages, fragile items, etc.

• Two important considerations are the weight of an
item and its insurance cost.
 Fragile items cost more to insure.
 All letters are assumed to weigh an ounce
 We must keep track of the weight of other packages.

• The company sells boxes and customers can put
several items into them.
 The software needs to track the contents of a box (e.g. to
add up its weight, or compute the total insurance value).

 However, most of the software should treat a box holding
several items just like a single item.

• Show a class diagram for representing packages,
complete with inheritance relations and method
signatures.

toad 4 15-214 Kästner

A First Pattern: Composite (Structural)

toad 5 15-214 Kästner

A First Pattern: Composite (Structural)

• Applicability
 You want to represent part-

whole hierarchies of objects
 You want to be able to ignore

the difference between
compositions of objects and
individual objects

• Consequences
 Makes the client simple, since it

can treat objects and
composites uniformly

 Makes it easy to add new kinds
of components

 Can make the design overly
general

• Operations may not make
sense on every class

• Composites may contain
only certain components

toad 6 15-214 Kästner

We have seen this before! (kindof)

interface Point {

 int getX();

 int getY();

}

class MiddlePoint implements Point {

 Point a, b;

 MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }

 int getX() { return (this.a.getX() + this.b.getX()) / 2;}

 int getY() { return (this.a.getY() + this.b.getY()) / 2; }

}

• Our designs for composite figures, grouped packages,
and union sets solve similar problems in similar ways

• We call this problem-solution pair a design pattern

toad 8 15-214 Kästner

Design Patterns

• "Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a
million times over, without ever doing it the same
way twice”
– Christopher Alexander

• Every Composite has its own domain-specific
interface
 But they share a common problem and solution

toad 9 15-214 Kästner

History

• Christopher Alexander, The Timeless Way of
Building (and other books)
 Proposes patterns as a way of capturing design
knowledge in architecture

 Each pattern represents a tried-and-true solution to a
design problem

 Typically an engineering compromise that resolves
conflicting forces in an advantageous way
•Composite: you have a part-whole relationship, but
want to treat individual objects and object
compositions uniformly

toad 10 15-214 Kästner

Patterns in Physical Architecture

• When a room has a window with a view, the
window becomes a focal point: people are
attracted to the window and want to look through
it. The furniture in the room creates a second
focal point: everyone is attracted toward
whatever point the furniture aims them at
(usually the center of the room or a TV). This
makes people feel uncomfortable. They want to
look out the window, and toward the other focus
at the same time. If you rearrange the furniture,
so that its focal point becomes the window, then
everyone will suddenly notice that the room is
much more “comfortable”.
– Leonard Budney, Amazon.com review of The
Timeless Way of Building

toad 11 15-214 Kästner

Benefits of Patterns

•Shared language of design
 Increases communication bandwidth
Decreases misunderstandings

•Learn from experience
Becoming a good designer is hard

•Understanding good designs is a first step

Tested solutions to common problems
•Where is the solution applicable?
•What are the tradeoffs?

toad 12 15-214 Kästner

Illustration [Shalloway and Trott]

• Carpenter 1: How do you think we should build
these drawers?

• Carpenter 2: Well, I think we should make the
joint by cutting straight down into the wood, and
then cut back up 45 degrees, and then going
straight back down, and then back up the other
way 45 degrees, and then going straight down,
and repeating…

toad 13 15-214 Kästner

Illustration [Shalloway and Trott]

• Carpenter 1: How do you think we should build
these drawers?

• Carpenter 2: Well, I think we should make the
joint by cutting straight down into the wood, and
then cut back up 45 degrees, and then going
straight back down, and then back up the other
way 45 degrees, and then going straight down,
and repeating…

• SE example: “I wrote this if statement to handle
… followed by a while loop … with a break
statement so that…”

toad 14 15-214 Kästner

A Better Way

•Carpenter 1: Should we use a
dovetail joint or a miter joint?

•Subtext:
miter joint: cheap, invisible, breaks easily
dovetail joint: expensive, beautiful, durable

•Shared terminology and knowledge of
consequences raises level of abstraction
CS: Should we use a Composite?
Subtext

• Is there a part-whole relationship here?
•Might there be advantages to treating compositions
and individuals uniformly?

toad 15 15-214 Kästner

Elements of a Pattern

• Name
 Important because it becomes part of a design
vocabulary

 Raises level of communication

• Problem
When the pattern is applicable

• Solution
 Design elements and their relationships
 Abstract: must be specialized

• Consequences
 Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different

consequences

toad 16 15-214 Kästner

History: Design Patterns Book

• Brought Design Patterns into
the mainstream

• Authors known as the Gang
of Four (GoF)

• Focuses on descriptions of
communicating objects and
classes that are customized
to solve a general design
problem in a particular
context

• Great as a reference text

• Uses C++, Smalltalk

toad 17 15-214 Kästner

A More Recent Patterns Text

• Uses Java
The GoF text was
written before Java
went mainstream

• Good pedagogically
General design
information
 Lots of examples and
explanation
GoF is really more a
reference text

• Mandatory reading

• Helpful for HW4 and 5

toad 18 15-214 Kästner

Fundamental OO Design Goals and Principles

• Patterns emerge from fundamental design goals
and principles applied to recurring problems
 Reduce coupling, increase cohesion
 Design to interfaces
 Favor composition over inheritance
 Design for change (find what varies and encapsulate it)

• Patterns are discovered, not invented
 Best practice by experienced developers
 Shared experience

toad 19 15-214 Kästner

Composite Pattern

• Applicability
 You want to represent part-

whole hierarchies of objects
 You want to be able to ignore

the difference between
compositions of objects and
individual objects

• Consequences
 Makes the client simple, since it

can treat objects and
composites uniformly

 Makes it easy to add new kinds
of components

 Can make the design overly
general

• Operations may not make
sense on every class

• Composites may contain
only certain components

toad 21 15-214 Kästner

Patterns to Know

• Façade*, Adapter*, Composite, Strategy*,
Bridge*, Abstract Factory*, Factory Method*,
Decorator*, Observer*, Template Method*,
Singleton*, Command, and Model-View-Controller

• Know pattern name, problem, solution, and
consequences

• Know when to use them and when not

* explained in:

